1

Philadelphia University

Faculty of Engineering

Dept. of Computer Engineering First Exam, Second Semester: 2018/2019

Course Title: Control Systems – sec.1	Date: 24/3/2019
Course No: (610414+640344)	Time Allowed: 50 minutes
Lecturer: Dr. Mohammed Mahdi	No. of Pages: 1

Question 1:

Objectives: This question is about the electrical analogy RLC circuit. Given the following RLC circuit.

It is required to: -

1. Prove that the transfer function $\frac{\mu}{\mu}$	$\frac{Vo(s)}{Vi(s)} = \frac{s^2}{s^2 + \frac{R}{r}s + \frac{1}{rs}}$	(20 marks)
2. Define circuit characteristics.	L LC	(10 marks)

- 3. System differential equation.
- 4. Calculate Vo(0), Vo(∞) for Vi = unit impulse change in input.

Question 2:

Objectives: This question is about closed loop control system

Given the following general negative feedback control system block diagram.

If controller Gc(s) = k, feedback H(s) = 1, and process G(s) = $\frac{5}{s^2+10s+5}$, it is required to:-

1. Calculate closed loop transfer function.	(10 Marks)
2. Show kinds of system's responses as a function of k.	(10 Marks)
3. System's parameters for $k = 4$.	(10 Marks)
4. $C(t)$ for $k = 4$, and input is unit step change.	(20 Marks)

(10 marks)

(10 marks)

(50 Marks)

Student Name: Student Number:

(50 Marks)